ultimate-definite automaton - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

ultimate-definite automaton - translation to ρωσικά

PROPERTY OF A MATHEMATICAL MATRIX
Positive-definite Matrix; Positive-semidefinite matrix; Negative-semidefinite matrix; Negative-definite matrix; Indefinite matrix; Non-negative definite matrix; Non-negative-definite matrix; Positive definite matrix; Negative definite matrix; Positive semidefinite matrix; Negative semidefinite matrix; Positive semi-definite matrix; Definite positive matrix; Symmetric positive definite; Spd matrix; Non-negative definite; Nonnegative-definite matrix; Nonnegative-definite; Positive-definite matrices; Nonnegative-definite matrices; Positive definite matrices; Nonnegative definite; Positive-definite matrix; Positive semidefinite matrices; Negative semi-definite matrix; Definiteness of a matrix; Definite symmetric matrix

ultimate-definite automaton      

математика

предельно определенный автомат

semi-definite         
QUADRATIC FORM THAT IS EITHER GREATER THEN 0 EXCEPT FOR 0 OR LESS THEN 0 EXCEPT FOR 0
Negative semidefinite; Definite bilinear form; Semidefinite; Semi-definite form; Positive definite form; Positive-definite form; Semidefinite bilinear form; Positive definite bilinear form; Positive-definite bilinear form; Positive definite quadratic form; Indefinite quadratic form; Positive-definite quadratic form; Indefinite form; Positive Definite Quadratic Form; Negative semi-definite; Semidefinite quadratic form; Negative-definite quadratic form; Negative definite quadratic form; Positive semidefinite quadratic form; Negative semidefinite quadratic form; Semi-definite quadratic form; Positive semi-definite quadratic form; Negative semi-definite quadratic form; Negative-definite bilinear form; Negative definite bilinear form; Negative-definite form; Negative definite form; Semidefinite form; Semi-definite bilinear form; Positive semidefinite bilinear form; Negative semidefinite bilinear form; Negative semi-definite bilinear form; Positive semi-definite bilinear form; Positive semidefinite form; Negative semidefinite form; Negative semi-definite form; Positive semi-definite form; Semi-definite

общая лексика

квазиопределенный

полуопределенный

definite description         
DENOTING PHRASE IN THE FORM OF "THE X" WHERE X IS A NOUN-PHRASE OR A SINGULAR COMMON NOUN. THE DEFINITE DESCRIPTION IS PROPER IF X APPLIES TO A UNIQUE INDIVIDUAL OR OBJECT
Present King of France; Definite descriptions; Definite descriptor; The present King of France is bald; Iota operator; Definite description theory
определённая дескрипция

Ορισμός

cellular automaton
<algorithm, parallel> (CA, plural "- automata") A regular spatial lattice of "cells", each of which can have any one of a finite number of states. The state of all cells in the lattice are updated simultaneously and the state of the entire lattice advances in discrete time steps. The state of each cell in the lattice is updated according to a local rule which may depend on the state of the cell and its neighbors at the previous time step. Each cell in a cellular automaton could be considered to be a finite state machine which takes its neighbours' states as input and outputs its own state. The best known example is J.H. Conway's game of Life. {FAQ (http://alife.santafe.edu/alife/topics/cas/ca-faq/ca-faq.html)}. Usenet newsgroups: news:comp.theory.cell-automata, news:comp.theory.self-org-sys. (1995-03-03)

Βικιπαίδεια

Definite matrix

In mathematics, a symmetric matrix M {\displaystyle M} with real entries is positive-definite if the real number z T M z {\displaystyle z^{\textsf {T}}Mz} is positive for every nonzero real column vector z , {\displaystyle z,} where z T {\displaystyle z^{\textsf {T}}} is the transpose of z {\displaystyle z} . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z M z {\displaystyle z^{*}Mz} is positive for every nonzero complex column vector z , {\displaystyle z,} where z {\displaystyle z^{*}} denotes the conjugate transpose of z . {\displaystyle z.}

Positive semi-definite matrices are defined similarly, except that the scalars z T M z {\displaystyle z^{\textsf {T}}Mz} and z M z {\displaystyle z^{*}Mz} are required to be positive or zero (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite.

A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines an inner product.

Positive-definite and positive-semidefinite matrices can be characterized in many ways, which may explain the importance of the concept in various parts of mathematics. A matrix M is positive-definite if and only if it satisfies any of the following equivalent conditions.

  • M is congruent with a diagonal matrix with positive real entries.
  • M is symmetric or Hermitian, and all its eigenvalues are real and positive.
  • M is symmetric or Hermitian, and all its leading principal minors are positive.
  • There exists an invertible matrix B {\displaystyle B} with conjugate transpose B {\displaystyle B^{*}} such that M = B B . {\displaystyle M=B^{*}B.}

A matrix is positive semi-definite if it satisfies similar equivalent conditions where "positive" is replaced by "nonnegative", "invertible matrix" is replaced by "matrix", and the word "leading" is removed.

Positive-definite and positive-semidefinite real matrices are at the basis of convex optimization, since, given a function of several real variables that is twice differentiable, then if its Hessian matrix (matrix of its second partial derivatives) is positive-definite at a point p, then the function is convex near p, and, conversely, if the function is convex near p, then the Hessian matrix is positive-semidefinite at p.

Some authors use more general definitions of definiteness, including some non-symmetric real matrices, or non-Hermitian complex ones.

Μετάφραση του &#39ultimate-definite automaton&#39 σε Ρωσικά